A Multiscale Sub-linear Time Fourier Algorithm for Noisy Data
نویسندگان
چکیده
We extend the recent sparse Fourier transform algorithm of [1] to the noisy setting, in which a signal of bandwidth N is given as a superposition of k N frequencies and additive noise. We present two such extensions, the second of which exhibits a novel form of error-correction in its frequency estimation not unlike that of the β-encoders in analog-to-digital conversion [2]. The algorithm runs in time O(k log(k) log(N/k)) on average, provided the noise is not overwhelming. The error-correction property allows the algorithm to outperform FFTW [3], a highly optimized software package for computing the full discrete Fourier transform, over a wide range of sparsity and noise values, and is to the best of our knowledge novel in the sparse Fourier transform context.
منابع مشابه
Push-Broom-Type Very High-Resolution Satellite Sensor Data Correction Using Combined Wavelet-Fourier and Multiscale Non-Local Means Filtering
In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve the...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملA multiscale, Bayesian and error-in-variables approach for linear dynamic data rectification
A multiscale approach to data rectification is proposed for data containing features with different time and frequency localization. Noisy data are decomposed into contributions at multiple scales and a Bayesian optimization problem is solved to rectify the wavelet coefficients at each scale. A linear dynamic model is used to constrain the optimization problem, which facilitates an error-in-var...
متن کاملSystem Identification Based on Frequency Response Noisy Data
In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.4517 شماره
صفحات -
تاریخ انتشار 2013